Notes 5.5 Law of Sines

Label the sides and angles of the following triangle. Use **A**, **B**, and **C** to denote angles and **a**, **b**, and **c** to denote sides.

To solve an ______, you need to know the measure of at least one side and any two other _______of the triangle – either two sides, two angles, or one angle and one side. This breaks down into the following four cases.

- 1. Two angles and any side (AAS or ASA)
- 2. Two sides and angle opposite one of them (SSA)
- 3. Three sides (SSS)
- 4. Two sides and their included angle (SAS)

Law of Sines

If ABC is a triangle with sides a, b, and c, then

Example #1 Given Two Angles and One Side - AAS

For triangle ABC, $A = 35^{\circ}$, $B = 50^{\circ}$, and a = 16 feet. Find the remaining angles and sides.

Checkpoint

Find the remaining angle and sides a = 32 $A \xrightarrow{30^{\circ}} c$

Example 2 Given Two Angles and One Side - ASA

Because of prevailing winds, a tree grew so that it was leaning 3° from the vertical. At a point 20 meters from the tree, the angle of elevation to the top of the tree is 28° . Find the height *h* of the tree.

You try:

Find the height of the tree shown below.

The Ambiguous Case (SSA)

Consider a triangle in which you are given a, b, and A. $(h = b \sin A)$

Example #3 Single-Solution Case - SSA

For a triangle with **a** = 24 inches, **b** = 15 inches, and $A = 26^{\circ}$. Find the remaining side and angles.

You try: Given $A = 31^{\circ}$, a = 12, and b = 5, find the remaining side and angles of the triangle.

Example 4 No-Solution – SSA

Show that there is no triangle for which $A = 78^{\circ}$, **a** = 7, and **b** = 35.

You try:

Show that there is no triangle for which $A = 85^{\circ}$, *a* = 15, and *b* = 25.

Example 5 Two – Solution Case - SSA

Find two triangles for which $A = 40^{\circ}$, **a** = 12, and **b** = 14

You try:

Find two triangles for which $A = 58^{\circ}$, **a** = 4.5, and **b** = 5.

Area of an Oblique Triangle

Area of an Oblique Triangle

The area of any triangle is one-half the product of the lengths of two sides times the sine of their included angle. That is,

Area = $\frac{1}{2}bc\sin A = \frac{1}{2}ab\sin C = \frac{1}{2}ac\sin B$.

Example 6: Finding the Area of a Triangular Lot

Find the area of a triangular lot containing side lengths that measure 84 yards and 55 yards and form an angle of 115°.

You try:

Find the area of a triangular lot having two sides of lengths 24 inches and 18 inches and an included angle of 80°.

Example 7: An Application of the Law of Sines

a. The course for a boat races starts at point A and proceeds in the direction S 52° W to point B, then in the direction S 40° E to point C, and finally back to point A. Point C lies 8 kilometers directly south of point A, Approximate the total distance of the race course. See figure below

b. A boat travels from point *A* to point *B* at a bearing of N 82° W. The boat then travels to point *C* at a bearing of S 36° E. Point *C* is 15 miles due south of point *A*. How many total miles does the boat travel?

You try: On a small lake, you swim from point A to point B at a bearing of N 28° E, then to point C at a bearing of N 58° W, and finally back to point A, as shown in the figure below. Point C lies 800 meters directly north of point A. Approximate the total distance that you swim.

